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The investigation of stability of the Poiseullle flow in a flat channel with
respect to infinitely small perturbations 1s, as is known, reduced to solving
the following problem. It 1s to determine whether for Equation 0.1)

(D—ao=iaR (u—c) (D*—a)—w}e (D= 3‘%, —1<y<t, u=1—y?)

with boundary conditions
c=Dp=10 for y=+1 (0.2)

there exists an eigenvalue . ¢ = : ;, R) contained in the upper half-plane
(for any values of positiv paramet. : o and R). If sucha ¢ =o,+ C,,
0,> 0 does exist, then the Polseuill : flow 1s unstable.

This problem has attracted the a. zntion of many ilnvestigators who had
used analytical and numerical methcd:, and had arrived at different conclu-
sions as regards stability (see historical review in [1]. Heilsenberg was
the first to deduce in 1924 [2] the Polseuille flow instability. His con-
clusions were disputed for a lon% time, as 1t seemed paradoxical that visco-
sity phenomena could contribute to instabllity, and also because his mathe-
matical analysis needed substantiation.

Proof 1s given in the following that the direction indicated by Heisenberg,
Tollmlien, Lin and Thomas [2 to 5] leads to the correct answer to the stabi-
1ity question. For convenience all references are made to the comprehensive
review [1] and, therefore, do not indicate the historical sequence of inves-
tigations. In Section 1 a rigorous mathematical formulation of this problen
is given. S8Section 2 deals with the analysis of the fundamental system of
Equations (0.12. Finally, in Section 3 the characteristic determinant of
problem {0.1),{0.2) i1s analysed, and the approximate eigenvalue of o 1is
found.

1. The problem (0.1),(0.2) is considered, in accordance with [1], in a
complex y-domain. The position of point y. has clearly an important bear-

ing on the analysis. It is defined as the root of Equation
u(yy) —e=20
it is the point at which the "degenerate” equation
(w—) (D~ g—u'g=0
derived from {0.1) for aR - » Fras a singularity.

21z
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There are two such points for any a # 1 . The analysis will be made
with small values of ¢ , so that points y,, and y,, will be close to —1
and + 1 , respectively

e=—(1—0" =y, pr=(1—0)" =—u
(Here and in the following text the root of numbers positive and not tend-
ing to zero is understood as the approximation to the mean value). A linear
substitution of the unknown ¢ 1in the complex domain

2 =1/s
2=y W—p)=0—c) " (y—yJ)
transforms problem (0.1),(0.2) into the following:

(D*— B2 = ip? {z (1 —%z)(Dﬂ__ B?) + 1} [0} (D = TldT) (1.1)
¢=D9p=0  for 2=13, z2=2,=2—12 (1.2)

We have to find for Equation (1.1) a point =z = 2z, at which condition
(1.2) 18 fulfilled; with this, the complex parameters g and p? will be

expressed by  ga _ 43 (1 — ), p* = 2aR (1 — c)? (1.3)
2y =25() =1 —(1 —0"%=—"ee(1+0())
=2, =2—z, =1+t -9 =2+Ye+0() I

Such a formulation of the problem has certain methodical advantages over
the initial one, Instability corresponds to 2z, in the lower half-plane.
As prodlem (0.1),(0.2) 1s an "even” one, so (1.1),(1.2)41s also even with
respect to point z = 1 . Problem (0.15,(1.2) is analyzed by the asymptotic
method for small o and large aof . At the beginning it can be limited to
the problem of finding small eigenvalues of ¢ , as evidently such ¢ do
exist. Stating the problem in form (1.1),(1.2) makes the following assump-
tions possible: because ¢ 18 small, the dependence of 82 and p*® on ¢
is probably insignificant. Therefore, an attempt at finding the first
approximation can be made thus: substitute g2 and p? for o°® and qR as
independént variables, find points 2, and z,= 2 — 2, at which the solution
of o(z; 8, p) together with the first derivative becomes zero, and compute
¢ from Formula (1.4) using the derived value of 2.

These considerations lead to the following.

1. An analysis is made of a certain fundamental system of solutions
of Equation (1.1¥ consisting of a pair of "smooth” solutions which for p~ =
are close to the solution of the degenerate equation, and of a pair of the
boundary value type solutions. The dependence of these solutions on g° and
A = — 1p® , considered as independent parameters, is analysed. Because coef-
ficlents of (1.1) are even, with respect to point =z = 1 , the fundamental
system can be assumed to consist of even and odd functions. It appears that
there exist "smooth" and boundary value type even solutions for which the
fulfilment of (1.2) at point 2z, brings its fulfilment a¢t point =z, .

2. The characteristic determinant of this pair of functions

OB A V(B A
f(z: B M= ' (z; 8, A) VY (z: B, A) (1.5)

1s analyzed in the neighborhood of the coordinate system origin =z = O
(because of the assumed smallness of ¢ ) , and the approximate root z,(g,\)
of Equation J(z; B, A) = O is derived.

. The error of the root determination is evaluated, or more precisely,
it is demonstrated that

[zoB8, 2 —ZB, M| <€ |Imz (B, M| (1.6)
where Z{(g, ) 1s the exact root of JS(2; g, A) = O .
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Thus, the sign of the true root imaginary part coincides with that of the
imaginary part of the approximate root.

L, Finally, an analysis 1s made of Equation

z=2(p (e, 2), A (R, 2)

where the dependence of 8 and X on 2z 1is obtained substituting c(z)
from (1.4) for ¢ . Proof 1s given that the solution of this equation is
in the same area of the z-plane (i.e. solution for Im & < O ). The proof
of this statement 1s of an elementary topological character.

Unless otherwise stated, the analysis will be carried out in the domain
of parameter varlation as follouws:

Jp}— oo, larg p| e 1.7
Bl =0, larg Bl <e (1.8)
el <€ 2] KU, tagrz —nk| <e (1.9)
B (pi€ [BI® (1.10)

Here ¢ 1s a fixed small number (for example, ¢ = /i .m ) .

The reason for these limitations is the desire to ensure the applicability
of asymptotic formulas, while theilr Justification lies in that with the
stated assumptions 1t 1s possible to prove the existence of instability.
Limitations (1.9) and (1.10) can be weakened without much trouble; moreover,
this becomes necessary for the analyslis of the asymptotic behavior of the
neutral curve (i.e. the curve in the oR-plane in which o,= 0) expressed
by B8%p ~ const , B°p ~ const .

2. Equation (1.1) belongs to the class of equations analyzed by Wason
[6]. In the formulation of 1its results, first the fundamental system of

solutions of the degenerate nonviscous Equation is written

{z(1 2) (D*—B)+ 1o =0 (2.1)
which is obtained from (1.1) by a formel transition to limit at p -~ = .
Tquation (2.1) i1s of the Fuchs type (see, for example, [8]) having charac-
teristic values of zero and unity at singular points 2 = 0 and 2z = 2 .
It has, therefore, a fundamental system in the neighborhood of 2 = O,
consisting of a regular solution at zero

91(z,8) =2 Do ()2 (2.2)
and a singular solution k=0

Gz, B)=@Lloz+y(z B),  x( B)= 2R be@) X (23)
k=0
Series (2.2) and (2.3) are convergent for |z| < 2 . Coefficients a,(g)

and ?,(p) are complete functions of g2

ax (@) = NapB?, b (B) = 1“2 by,B¥ (2.4)

=0
Coefficients gx and by are to be found from the recurrent relation-

ships
° 1

2 1 1 ;
Bpsn il = 5 (1 ”m) @ki1,141 1 m(dk, 1= ak«l.l) (2.5)
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1 2 1 i
Bisn, 143 = =5 (1 - m) byia, 140+ FEDETY (bk,lu — 3 by, 141 > —

1 2
- M““’”‘m (@kaz, 142 + @ps1, 142) m (ax.2, 142 — Qke1, 1+2) (2'6)

Functions ¢, (2, 8) and ¢,(z, 8) are determined with an approximation of
the order of the constants.

In particular, assuming @4 =1, ayo = —Y,, by, =0, by, = — Y,
we obtain

01 (5,B) = 2 { (1 —1/22) + B2 (1/622 ... )+ ...+ B (@a™ 4 .. )+ ...}
Y(ZB)y=—1F22+ ... + B ). BBz L)

This presentation of solutions, usually resorted to in the theory of dif-
ferentlal equation analysis, has certain advantages over that of the Helsenr
berg series, often used in the theory of hydrodynamic stability, from the
computation and theoretical points of view (ef. [1], Chapter III). Solution
w22, B) wilf obviously be a multiply-valued functlon in the neighborhood of
z = 0 . In the followlng 1t will be necessary to separate the single-valued
branch 1n 2z from the multiply-valued function Ln z .

For reasons explained below, the following branch will be considered
Inz=In|z|+{argz, 12n<Largz<—3/2m
(i.e. plane 2z 1s cuf along ray Re z = 0, Imz > 0). In the following
the analysis will be confined to the cut plane, and oz{z, ) will be taken
as the solutlon relative to 1n 2 , as selected above. Wason's conclusions

[6] with respect to the fundamental system of solutions of Equation {1.1)
will be formulated as follows.

Equation (1.1) will be considered in conjunc-
tion with Wason's model equation.

i ¥ + N {ay’ 4y} = 0 2.7)

= (Here » 1s a large parameter [i] = = .,

N J; ’,( s
The fundamental system of solutions of Equation
{2.7) was the subject of a detailed analysis in
5; {6a]. We shall describe it. Let JS* be a circle
in the complex x~plane, defined by |x| <a .
We introduce the following variable
&= ;M (— 2

and let (,* be three rays in the x-plane, defined by equations Re e =0,
i.e. arg z = fskn—2/3arg A (k =1, 2, 3)

(The diagram relates to the case of arg A = — in).

Fig. 1

We denote by S,* an open sector limited by rays ¢¥ (f # %) . For con-
venlence of analysis of the asymptotic behavior of these solutions at A= a
we shall consider separately two cases:
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L g >8>0, 2 JEI<E

i.e. the asymptotic behavior in an arbitrarily fixed ¢€,-neighborhood of
zero of the ¢£-plane is different from the asymptotic behavior outside that
nelghborhood. In the x~-plane this neighborhood contracts fairly rapidly to
zero for A - o , 1,e, this limitation 1s considerably weaker than, for ex-
ample, that imposed by the fixed nelghborhood configuration in the x-plane.
It turns out that within Sg* (i.e. in the area Eo|A|™s<Cx<(a ) there
exist solutions with the following asymptotic behavior:

() D™ (z, L) = D™ [2niz"J; (22'7)) + O (A°?) (m=0,1, 2, 3)

this asymptotlc character 1s true even within the full circle §° ;
this 1s a smooth regular solution.

2) DUy (z, A) = D™ (2niz"H,V (227)] + 0 &2t (m=0, 1, 2, 3)

this 1s a "smooth" singular solution in the closed sub-area § — 5, %
with singularity at small x| , ®# =1, 2, 3 .

(3) D" Ay (z, Ay = D™ Lty e 1 (1 + 0 ()  (m=0,1,2,3
in the closed sub-area S*- S* . Here one must assume that within s¥
we have Reg < 0 . These solutions are of the boundary value type.
If we now consider a closed sub-sector S* within area 5% = % 5%, we
f£ind that there exists the following fundamental system of solutlons (the
independence of solutions 1s evident):

1. #{x, .} - a smooth regular solution
2. Us(x, A} — & smooth singular solution

3. Ax(x, %} — a boundary value type solution decreasing from left to
right {on axis Im x = 0), with a negative exponent

4, As (x, 1) — a boundary value type solution decreasing from right
to left, with a positive exponent
A similar situation exlsts, as proved by Wason, in the case of the general
equation of the form . .
g H -
y@ + Nas(2)yed + 12 Xbi(x)y =0
j==1 j=0
with certain assumptions satisfied by Equation (1.1). More precisely, 1t 1s
necessary to consider circle §
lz]<<2—46

and the curvilinear rays ¢; defined by Equations

Ref = 0 F=1,2 3 (£ = 23A (D (2))%)
3 1 :
' n oS
(m(z):{TS[mg(u-‘—zg)} dCJL ' @ (0) =0, @’ (0) =1
0
Rays (C, originated at point 2z = O, with tangents C,*, define the
curvilinear sectors S, which are models of sectors $* in the representa-
tion x = ®(z) . Then in the model §;**  of the closed subsector S: **
we have a fundamental system of solutions of the form as follows:
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1) D™ @1 (z;8,4) = D™ ¢, (2, B) + O (A2 (2.8)
(9. {2z, 8) 41s a regular solution of the degenerate equation {(2.1}))
2) D"qa(z; B, A) = D™y (z, B) + R (z, A) (2.9)
Ry=0(A%2%), Ry=0(A"z2), Ry=0(z1), Ry=0(z"), R,=0(1"?)
(for |2| = 2o, where 1z, iz 8 fixed number) (2.10)
{wa{z, 8) 18 a singular solution of the degenerate eguation (2.1))
m e e . T{m
3) Dles(z B, N =D"[x@r (58] ] d+o@y @4

(HeE <O for z3>0; m=0, 1,2, 3)

(with exponent A(z) diminishing to the M?M’ a smooth function which does
not vanish

m m e e Y
4 g B, =D [x(@ A (55 eV dtogy) (242
(Re§ >0 for 2>0; m=0,1, 2, 3)
(with exponent x(x) increasing to the right, a smooth function which does
not vanish)

Punction &(r) can be presented in the explicit form
) ={3Y(—t{1—F)" A" = const(@— 1) VzT—Tr) +
0 e et
+ o Vz(—"2)

with a natural selection of brancnes. It will be seen from this formuls,

or directly from the integral, that the segment of the real axis —e¢sgs2-§
in the z~plane becomes 2 certain sector — e¢‘sx s ¢ of the real axis in
the x-plane, and in particular that axis Imz =0, Rez20 1is entirely
contained in sector &, (as 1t is not intersected by any of the Oy, and
because for small |#| we have (, ~(,*) . This proves the validity of the
derived formulas in the neighborhood of point z = 1 .

We note once again the fundamental features of the separated fundamental
system of solutions. It contains two “"smooth™ functions o, {z; g, 1) and_
92(%; B, 1) which are approximate solutions of the degenerate "nonviscous
equation (2.1), However, o,(z; B, A) may be considered as a smooth function
only in area S‘E. 3 the two boundary value type solutions o, and o, ,
x:giughly speaking.” represent in S* the exponential functions with exponent
S*%:,5 . One of these functions decreases from the left end inwards of 8%,
and”the second from the right end. Thus, if point s, at which we wish to
establish boundary conditions g(z;) = Dg(2,) = 0 1lies within S*;, and
because point z = 1 , as stated aéove, s also in the space S*éw ‘we may
expect to find conditions which for simpler problems are called regular
degeneration” {10]. This assumption proves to be correct.

Even solutilions . Having proved the existence of two line-
arly independent even solutions with respect to point s = 1 , one smooth,
the other of the boundary value type, it is possible to reduce the rank of
the characteristic determinant from four to two. This simplifies the expo-
sition without affecting the principle.

For the formulation of the even solution of the boundary value problem

it will be necessary to consider the Cauchy problem for (1.1) with initial
data at point x = 1,
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¥ (18, =@ (18, 4)  (m=0,2) v (48, M)=0 (=1,
Function Y(z; B, A) 1s defined by Formula

¥ (2 8.0 = [C 195 (1; B, M) @1 (5 B, A) + [Col s (15 B, A) @, (z B, M) +
+ M1z (2 B, M) + 952 (15 B, Mg (2 B, 1) 12.13)

C;=const, [al=a(1+ 0 Q™)

For small =z solution ¥(z; g8, \) together with its derivatives has the
same asymptotic character as o,(z; 8, A) , but is an even function with
respect to 2z =1 .

Of course, it 18 not posalble to derive a smoth even solution by solving
directly Cauchy's problem at point =z = 0 , as inevitably the boundary lay-
er will "grow" at the right- and left-hand side boundaries. There exists,
however, an even boundary value function v(x; 8, A) which can be subtracted
with suitable coeffilcients, leaving a smooth function. With this in mind,
we shall solve Cauchy's problem for initial conditions as follows:

O™ (1; B, M =0™ (1,8)  (m=0, 2 0O B, =0 =19
where ®(z, 8) 18 the even solution of the "nonviscous" equation [6] expressed
by
@ (2, ) = @y (2, B) + k¢, (2, B) (214)

(coefficients k = x(g) will be derived below), then

D, (78, M) = (119, (2B, 1) + [k, (258, 4) +
T OAMYPs (18, M) @ (2B, M)+ O A Yo, (4; B, M) @s (258, 1)
The last term of &, (2; B, ») contains factor o.(1; B, A) which is expo-
nentlally large. It is 1n fact the parasitically grown boundary value layer.
It will disappear, however, if we subtract from @, (z; B, L) the even boundary

value solution (2.13) after having it multiplied by the coefficient
OMYg,(1;B,A)° for ¢@3(z;8,A) we obtain the sought smooth even solution

Q (8,0 =[1o1(z B, A) + [Klgy (z 8,0 + 0 Aoy (1B, Mo (z B, D) (215)
Coefficients of @, and g, become terms of the order of o(A"*%) .

Before proceeding further 1t 1s necessary to asnalyse the root of equation
close to the coordinate origin
: _[®EB M ¥EB Y 2.16
fER M=o  vEa (2.16)
The dependence of the boundary value solution v(z; 8, \) on B will
not matter; in this case it will be sufficient to consider the asymptotic
term which does not contain g (as was done before). The dependence of
function ®(x; 8, L) on g 1is, on the other hand, very considerable.
We shall consider the even solutions of the nonviscous and of the dege-

nerate characteristic equations. Coefficlent k() of the even solution
&(z, 8) of Equation (2.1) in Formula (2.14%) can be presented in the form of

a series oo .
; ¢ (1, B)
k = k2 (k = ~—-,—>
®=2 B =— o f)

Formulas for coefficient %, are obtailned from the basic equation of (2.14)
(the numerator and denominator are power series with respect to g°). These
coefficlents may also be found in the form of definite repetitive integrals
of known functions, in particular

1
1 2
Fi=—2 S[z (1—7z)] dz <0
3 \
For our purposes it will be sufficlent to know that
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k@) = 1+ 0 @Y, k<0 (2.17)

As the dependence of terms ®(z; B8, x) and ¢®'{z; 8, A} on A in Egqua-
tion (2.16) 1is weak and v’{z; 8, A} is |\]|-times greater than ¥{(z; 8, 1),
it will be natural to take as the first approximatlon of z the root of
Equation ®(z; g, ) = 0 , 1.e. to equate to zero coefficient of the large
term v’ (2; B, XS (of the order of A ) . In view of the shown weak depend-
ence of @(z; g, A) on X , it would again be natural to expect that the
principal asymptotic term of this root will coincide with the principal
asymptotic term of the root of the simpler equation @{z, B} = 0 of the
nonviscous characteristic egquation.

For small =2z and p§ the following equality is true
D (z,B) =2+ 0(z°) + O (B*2) — ksB* + O (B*2Inz) = z — kuP* + 0 (2) + 0 (B?)

From this we obtain

2=k +0(@? (2.18)

It will be shown in the following that the first term of (2.18) is in
fact the principal asymptotic term of the root of Equation {2.16). The
possibllity of its derivatlion from the solution of the nonviscous problem
had evidently not been realized earlier ([1], Chapter III).

3. PFurther analysis will be carried out as follows. The principal asymp-
totic terms of function JS(z; 8, A} are written down for large A , and small
g and 2z . These terms are denoted by J,(x; g, \) , and the approximate
solution & = zo(g, A) of Equation J,(2; B, A) = O 1is found. Next, we
evaluate the difference |Z(g, A) — #,(B, %)| between solution 2(g, L) of
Equation (2.16) and 2,(8, A} . This difference is found to be smaller than
the imaginary part of 2,{B, X) which means that Z{g, A) 1s in the same
half-plane as 2o{(8, A) . PFinally we make the following substitution:

A = (2iaR (1 — o)'n, B2 = a2 (1 — o)
c=c(z)=1—(1—z)y?=(—2z+42%)(1—2z)2
and consider Equation
z2=2Z(B(2), A(2)

It is shown that for large oRf and small o° this equation has its solu-
tion z(g, A) close to solution Z (P = a, A = (2iaR)"), and in any case 1s
in the same plane. Completion of thls exercise provides the complete solu-
tion of the Poiseuille flow stability problem.

The even solutions (2.13) and (2.15), expressed in terms of the "nonvis-
cous” solutions o, (2; B8) and wo(2; B) , and of the boundary value eguation
ws (2; 8, L) decreasing from left to right, have the form

O™ (z; 8,4) = @™ (2, B) + &k ) 9™ (2, B) + O (B*R,,) =
= @™ (z, B) + O (B°R,,) (m=0, 1, 2, 3) (3.1)
yim (z, B, M) = ‘Psgm) (z; B, &)+ O(h‘p) (P is arbitrary)

(these estimates are made on the assumption that Eo|A|™s<C|z|2 — 8
0<6<<2, E >0 are fixed). After substitution into (2.16), we have
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D(z, )+ O+ O(BRo)  @s(z; B, )+ O(AP) _
(2 B)+OM)+OFR) (5 B AFORTP) |
As an approximation of Equation (3.2) we can take Equation
D (z, B) Ps(zi B, A)
TEH T e e -3)
For the determination of the approximate root of this equation it will be
sufficlient (as will be shown later) to use approximations as follows:

3.2)

0GB Pz BN (V2 | . VZ
@ (z, B) =~ Z-— k1B2, m ~—0 1 (—-—-— Z) (—Z-— + [ T) (3_4)

On comparing the two formulas of (3.4), and considering (assuming) that
arg p* << arg z, (this assumption 1s based on formulas expressing ¢ 1in

terms of 2z , and g% in terms of o(z), we assume (3.9)
9 1 2 V2 11
Re zo = Re (k,§?), lmz0=—-—Rep—7;—ZJ—.:~= —TV——/ﬁRe—p—3<0

This defines a certain approximate root of Equation (2.16).

The error made in the determination of this root may be estimated in
several ways. In order to avold any arguments about the analytic nature of
our equations (incidentally, not very complicated), we shall use here Newton's
method in the form given to it by Kantorovich [8] in preference to the often
used Runge theorem.

This method, in its application to the solution of equation [f(z) = O ,
can be stated as follows: let 2, be the approximate root of Equation

[ {20) 1)
f(2)=0, 7 (ao) f (z0)

with h = n and X - O with respect to a certain parameter. Then the true
root will be within the circle |2 — z,| < n (condition that K - O 1is not
essential, it is used here to simplify the theorem formulation). As only
the sign of the imaginary part Im z(8, A) 1s important, 1t will be guffici-
ent to prove that
n = 0 (Im z5) = O (p7'f77)
Recalling that (in accordance with (1.5))
FzBAN)=0 (MY (584 — @ (0 M ¥(z6 4
and using estimates (2.8) to {2.12) and (2.17), we easily obtain

f(z0; By M) = @3 (203 By A) 0 (B* %) O (Bp).f' (25 By M) = @5 (245 B, M) O (Bp)
f (2 By A) = @5 (205 By M) O (B%0)

<K

< 1, max,

Hence,
ko= 0 BTHOBP) =0, M=oY =0 (B for p=0 (V)
This proves that Equation (2.16) has a root z = Z{B, A) contained in
circle
lzg (B, 2) — z| << = o (p77Y) (3.6)
with the negative imaginary part of parameter
Imz@B,A) = —1, V2 (— k)7 Re pB1 (1 + O (p7p7)
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However, it is the root z{a®, a®) of the following equation that has to

be found .
2 — 2iBR .
2=2Z(*(1—c{z)}, 2iaR(1—c(z)) =2 ((1 .i p _iaz)s }

Proof of the existence of this root is obtained by applying the prineciple
of the stationary point to the representation of c¢ircle |z, — z{C B 11|
by means of the Z-function. By virtue of Formulas (3.5) and (3.23 this
circle penetrates inside the circle of radius |z — z|= o (p7f )

Notes 1. It is easily seen that a more extensive application of
results of Wason's work would make 1t possible to derive the asymptotic
character of the neutral curve branches in the o, R-plane . Specifically,
this curve has two branches defined by Equations K ~ g~ and % ~ o .
This result [1] can be proved as strictly, as the finding of points inside
a curve.

2. The method applied here may also be used for the derivation of eigen~-
values ¢ = of{a, R) , and in this sense it is simpler than the Helsenberg~
Lin method [11].

3. The problem of boundary layer stability on a flat plate, and other

problems concerning plane-parallel flow stability losses, may be analized
by this method.

The author wishes to thank A.N. Kolmogorov for drawing his attention to
this problem, and for the interest shown and participation in this work,
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